Anesth Pain Med Search


Anesth Pain Med > Volume 11(2); 2016 > Article
Choi, Chang, Jung, and Jo: Palonosetron might not attenuate spinal anesthesia-induced hypotension during orthopedic surgery



5-Hydroxytryptamine3 (5-HT3) receptor antagonists have been reported to attenuate spinal anesthesia-induced hemodynamic changes. This study was conducted to determine whether the second generation 5-HT3, antagonist palonosetron attenuates hypotension and bradycardia during spinal anesthesia.


Sixty adult patients scheduled for lower limb surgery were enrolled in this study. Patients were randomly assigned to receive either normal saline (Control group, N = 30) or palonosetron (0.075 mg, i.v.) (Palonosetron group, N = 30) prior to spinal anesthesia. Hemodynamic variables were recorded during anesthesia.


The mean blood pressure (MBP) were 89.2 ± 11.4 mmHg in the control group and 87.6 ± 12.1 mmHg in the palonosetron group at 10 min after intrathecal injection (P = 0.609). The median blocked levels of the control group and the palonosetron group were T10 (interquartile range, 9-10) and T10 (8-10) at 20 min after intrathecal injection (P = 0.939). Requirements for ephedrine, phenylephrine, and atropine were similar (P = 0.652, 0.533 and 0.417, respectively). The incidences of hypotension (40% vs. 41%) and bradycardia (7% vs. 17%) were comparable (P = 0.562, P = 0.198, respectively) between the control and the palonosetron group. There were no significances in the changes of systolic blood pressure, diastolic blood pressure, MBP and heart rate by the group (P = 0.632, 0.287, 0.556, 0.733, respectively).


Intravenous palonosetron (0.075 mg) prior to spinal anesthesia might not attenuate spinal anesthesia-induced hypotension during low level of neuroaxial block for lower limb surgery.


Spinal anesthesia-induced hypotension is commonly encountered, and the incidences of spinal anesthesia induced hypotension and bradycardia were reported to be 33% and 13%, respectively, in a previous analysis of 952 non-obstetric patients [1], and to be 50-60% in obstetric patients [2]. Intrathecal injection of local anesthetics produces thoraco-lumbar sympathetic block, and this may lead to reduced systemic vascular resistance and venous pooling. Furthermore, during high level neuroaxial blocks, cardio-accelerator sympathetic block leads to bradycardia and reduced cardiac output. Relatively strong parasympathetic tone after sympathetic block also triggers Bezold-Jarisch reflex leading to sudden profound bradycardia [3-8].
5-Hydroxytryptamine3 (5-HT3) receptor activation at sensory vagal nerve endings in the heart elicits bradycardia and hypotension [9], and thus, 5-HT3 receptor antagonists had been used to attenuate spinal anesthesia-induced hemodynamic changes. Owczuk et al. [10] demonstrated that 8 mg of intravenous ondansetron attenuated spinal anesthesia-induced reductions in systolic and mean arterial pressures. In addition, Eldaba and Amr [11] reported 1 mg of granisetron before spinal anesthesia significantly reduced the incidences of hypotension and bradycardia and lowered vasopressor requirements as compared to a placebo control group during cesarean delivery.
Palonosetron is a second-generation 5-HT3 receptor antagonist and has been reported to possess superior anti-emetic properties and greater receptor binding affinity than classic 5-HT3 antagonists, such as ondansetron and granisetron [12,13].
Thus, we hypothesized that palonosetron might attenuate spinal anesthesia-induced hemodynamic changes more so than other classic 5-HT3 antagonists, and thus, we conducted this study to test the hypothesis that the use of intravenous palonosetron attenuates hypotension and bradycardia during spinal anesthesia.



After obtaining the Institutional Review Board approval from our center, 60 adult patients of American Society of Anesthesiologists physical status 1 or 2, aged 20-65 years and scheduled for elective lower limb surgeries from March 2015 to August 2015 were enrolled in this prospective randomized study. Patients with a history of uncontrolled hypertension or cardiovascular disease, uncontrolled diabetes mellitus, a severe respiratory disease, or any contraindications for spinal anesthesia were excluded.

Anesthesia and group assignments

All patients received 0.03 mg/kg of midazolam intramuscularly as premedication 1 hour before anesthesia and no additional sedatives were administered during the operation. Patients were randomly assigned to receive either normal saline 1.5 ml (Control group, N = 30) or palonosetron (0.075 mg/1.5 ml, i.v.) (Palonosetron group, N = 30) 15 minutes before intrathecal injection for spinal anesthesia. On arrival at the operating room, non-invasive blood pressure monitoring, electrocardiography and pulse oximetry were applied. All patients received a fluid preload of 300 ml of crystalloid solution. Spinal anesthesia was performed in the lateral position using 0.5% hyperbaric bupivacaine and a 25 gauge Quincke needle at the L3-4 or L4-5 interspace by an anesthesiologist unaware of group identities and the dose of bupivacaine was determined as anesthesiologists’ discretion.

Monitoring of hemodynamic variables

Vital signs were measured at 2 min intervals up to 20 min after intrathecal injection and changed to 5 min interval until the end of surgeries. Systolic (SBP), diastolic (DBP), and mean (MBP) arterial pressures, heart rate (HR), and pulse oximeter oxygen saturation (SpO2) were recorded 15 min before intrathecal injection (T0; immediate before administration of palonosetron or normal saline), 1 min after intrathecal injection (T1), and every 5 min after injection (T5-T40) by a senior trainee unaware of group identities. The blocked thoracic spinal level was checked at 1, 5, 10, 15 and 20 min after intrathecal injection. All operative procedures were undergone in the supine position without urinary catheterization. Pneumatic tourniquet was placed in the patients’ thigh (250 mmHg).
Hypotension was defined as a SBP fall to 80% of baseline or a fall to < 90 mmHg. Bradycardia was defined as HR of < 50 beats/min. Hypotension was treated with 50 μg of phenylephrine (heart rate ≥ 70 beats/min) or 5 mg of ephedrine (heart rate < 70 beats/min) and bradycardia was treated with atropine 0.5 mg (i.v.). Intravenous fluid was infused at a constant rate of 6 ml/kg/h.

Outcome variables

The primary outcome variable was MBP after spinal anesthesia. The secondary outcome variables were changes of SBP, DBP, and HR. Maximal changes of hemodynamic variables were calculated as differences between baseline and lowest values.


To calculate sample sizes, we used previously reported differences of MBP at 10 min after spinal anesthesia [10]. To detect a mean inter-group difference of 6 mmHg in MBP, 23 patients per group were required for an α-error of 0.05 and a power of 80%. Considering 30% of possible drop outs, 30 patients were recruited per group.
The statistical analysis was performed using PASW Statistics ver. 13 (SPSS Inc, Chicago, IL, USA). Data are expressed as mean ± SD, median (interquartile range) or number of patients. Patient characteristics and perioperative clinical data were compared using the student’s t-test or Fisher’s exact test, as appropriate. Non-parameteric variables were analyzed with Mann-Whitney U test. Changes in hemodynamic variables over time between the two groups were analyzed using two way repeated measured ANOVA. Statistical significance was accepted for P values of < 0.05.


Of the 60 study subjects, one patient in the palonosetron group was excluded from the analysis due to operative plan changes. Demographic data, underlying medical diseases and perioperative clinical data including bupivacaine dose, anesthesia time, operation time and blocked sensory levels were similar in the palonosetron and control groups (Table 1).
Table 1
Patients’ Characteristics and Perioperative Clinical Data
Variables Control (N = 30) Palonosetron (N = 29) P value
Age (yr) 43.3 ± 14.2 45.1 ± 14.2 0.640
Weight (kg) 69.8 ± 16.0 70.5 ± 15.0 0.865
Height (cm) 168.6 ± 10.5 166.0 ± 9.3 0.313
Gender (M/F) 22/8 20/9 0.467
Diabetes mellitus (n) 2 2 0.513
Hypertension (n) 2 4 0.319
Hyperbaric bupivacaine (mg) 12.1 ± 1.4 12.7 ± 1.4 0.079
Anesthesia time (min) 109.8 ± 44.1 98.4 ± 35.2 0.278
Operation time (min) 72.8 ± 33.5 70.7 ± 34.2 0.809
Sensory blocked level at 20 min after intrathecal injection (n)
 T5-6 1 3 0.391
 T7-8 6 8
 T9-10 23 18
 Infused fluid (ml) 478 ± 206 538 ± 310 0.387

Values are mean ± SD or number of patients. Infused fluid, total infused fluid except preloading.

The incidences of hypotension (40% vs. 41%) and bradycardia (7% vs. 17%) were comparable (P = 0.562, P = 0.198, respectively) between the control group and the palonosetron group. The median blocked levels of the control group and the palonosetron group were T8 (6-10) and T7 (6-8) at 1 min after intrathecal injection (P = 0.416), and T10 (9-10) and T10 (8-10) at 20 min after intrathecal injection (P = 0.391). Requirements for ephedrine, phenylephrine, and atropine were similar (P = 0.652, 0.533 and 0.417, respectively). Maximal changes in group hemodynamic variables were similar (Table 2).
Table 2
Incidences of Hypotension and Bradycardia and Requirements for Phenylephrine, Ephedrine and Atropine
Variables Control (N = 30) Palonosetron (N = 29) P value
Hypotension, n (%) 12 (40) 12 (41) 0.562
Bradycardia, n (%) 2 (7) 5 (17) 0.198
Requirements of hemodynamic drugs
 Ephedrine, n (%) 3 (10) 4 (14) 0.652
 Phenylephrine, n (%) 1 (3) 2 (7) 0.533
 Atropine, n (%) 3 (10) 5 (17) 0.417
Hemodynamic changes (baseline values - lowest values)
 Systolic blood pressure (mmHg) 31.8 ± 18.9 31.2 ± 12.7 0.540
 Diastolic blood pressure (mmHg) 19.7 ± 12.4 18.8 ± 10.5 0.763
 Mean blood pressure (mmHg) 27.7 ± 15.2 24.4 ± 11.9 0.365
 Heart rate (beats/min) 13.5 ± 10.1 12.5 ± 9.4 0.681

Values are mean ± SD or number of patients (%).

Intraoperative changes in SBP, DBP, MBP, and HR are illustrated in Fig. 1. The MBP were 89.2 ± 11.4 mmHg in the control group and 87.6 ± 12.1 mmHg in the palonosetron group at 10 min after intrathecal injection (P = 0.609). The changes of each hemodynamic variables over time were significant (all P values < 0.001), but there were no significances in the changes of SBP, DBP, MBP and HR over time between the groups (interactive term ‘time x group’ in ANOVA) (P = 0.632, 0.287, 0.556 and 0.733, respectively).
Fig. 1
Peri-operative changes in systolic and diastolic blood pressures, mean blood pressure, and heart rate in patients that received normal saline (Control group) or palonosetron (Palonosetron group) during spinal anesthesia. Error bars represent with standard deviations. T0: Before anesthesia induction, T1: 1 min after intrathecal injection, T5-T40: Every 5 min after intrathecal injection (from 5 min to 40 min after intrathecal injection).


This study shows the administration of palonosetron (0.075 mg, i.v.) prior to spinal anesthesia for lower limb surgery did not attenuate spinal anesthesia-induced hypotension or bradycardia in our cohort.
For all study subjects, the overall incidences of hypotension and bradycardia were 41% (24/59) and 12% (7/59), which were consistent with previously reported incidences after spinal anesthesia [1] in non-obstetric subjects. However, response to 5-HT3 receptor antagonist differed considerably from those described in previous clinical studies which had concluded various 5-HT3 receptor antagonists effectively prevented spinal anesthesia-induced hypotension.
5-HT3 receptor participates in cardio-inhibitory responses in the left cardiac ventricle. Under conditions of preload reduction, the left ventricular wall can collapse and trigger vagal nerve-mediated cardiac inhibitory reflex [7,10,14,15]. 5-HT3 receptor is located in vagal nerve endings and activates thrombocytes to release serotonin [14-17], which leads to hypotension and bradycardia, referred to as Bezold Jarisch reflex. A sudden decrease in venous return induced by high neuroaxial anesthesia can activate this pathway. Palonosetron has unique structural, pharmacological characteristics compared to classic 5-HT3 antagonists. Other 5-HT3 antagonists such as ondansetron and granisetron directly compete with serotonin, and attenuate the Bezold Jarisch reflex which mediated by serotonin in cardiac vagal nerve ending. However, palonosetron exhibit allosteric binding and the effects persisted beyond its binding to the 5-HT3 receptor at the cell surface [18]. These functional and structural differences could contribute to the different result of our study to other studies which related with classic 5-HT3 antagonists.
In a previous comparative study of ramosetron and ondansetron in the context of spinal anesthesia induced hypotension, they reported that 67-74% of the patients were above T5-6 and ramosetron attenuated hypotension more so than ondansetron [19]. In fact, the majority of studies that have addressed the effects of 5-HT3 antagonists on spinal anesthesia-induced hemodynamic changes involved high levels of neuroaxial block [10,11,20]. On the other hand, in the present study, only 7% (4/59) of patients experienced high neuroaxial block. Singla et al. [21] reported that when the anesthetic level was under T10, there was little change in systemic vascular resistance (SVR) with little hemodynamic changes and when the level was over T6, the reduction of preload was large because of blood pooling into hepatosplanchnic venous areas and therefore the risk of hypotension increased by about 2.4 times than lower than that level [21]. Thus, we considered 5-HT3 antagonists might be effective against hypotension relevant to Bezold Jarisch reflex than hypotension induced by venous pooling. Further studies are needed to compare the effects of palonosetron on hypotension and bradycardia at different levels of neuroaxial block.
In this study we separately demonstrated BP as SBP, DBP, and MBP. Previous study demonstrated that ondansetron did not effect on SBP, but attenuate the decrements of DBP and MBP. They suggested that SVR was closely related to DBP than SBP and, so, the effect of ondansetron induced the changes of DBP and MBP [22].
One major limitation of our study is that we overlooked the effects of level of neuroaxial block and dose of intrathecal local anesthetics. Though the incidence of hypotension and bradycardia in this study was similar with previous study of non-obstetric patients [1], it was already known that the high thoracic block and large doses of local anesthetics were related with high frequency of Bezoled Jarisch reflex after regional anesthesia [15]. So, further study in the patients who are needed for high spinal block might help to generalizing the effect of palonosetron on spinal anesthesia-induced hypotension and bradycardia. Another limitation is that we failed to notice the effect of onset time. Although there was no unique report about onset time of palonosetron, palonosetron is recommended to administered immediate before anesthetic induction or 30 min before chemotherapy. We administered the study drug 15 min before intrathecal injection and we had to consider that only 15 min might not enough to reveal the antagonistic effect on 5-HT3 receptor.
We conclude that intravenous palonosetron (0.075 mg) prior to spinal anesthesia might not attenuate spinal anesthesia-induced hypotension and bradycardia during low level neuroaxial block for lower limb surgery.


1. Carpenter RL, Caplan RA, Brown DL, Stephenson C, Wu R. Incidence and risk factors for side effects of spinal anesthesia. Anesthesiology 1992; 76: 906-16. PMID: 10.1097/00000542-199206000-00006. PMID: 1599111.
crossref pmid
2. Somboonviboon W, Kyokong O, Charuluxananan S, Narasethakamol A. Incidence and risk factors of hypotension and bradycardia after spinal anesthesia for cesarean section. J Med Assoc Thai 2008; 91: 181-7. PMID: 18389982.
3. Rooke GA, Freund PR, Jacobson AF. Hemodynamic response and change in organ blood volume during spinal anesthesia in elderly men with cardiac disease. Anesth Analg 1997; 85: 99-105. PMID: 10.1097/00000539-199707000-00018. PMID: 9212130.
crossref pmid
4. Butterworth J. Physiology of spinal anesthesia: what are the implications for management? Reg Anesth Pain Med 1998; 23: 370-3. PMID: 10.1016/S1098-7339(98)90008-6. PMID: 9690588.
crossref pmid
5. Brooker RF, Butterworth JF 4th, Kitzman DW, Berman JM, Kashtan HI, McKinley AC. Treatment of hypotension after hyperbaric tetracaine spinal anesthesia. A randomized, double-blind, cross-over comparison of phenylephrine and epinephrine. Anesthesiology 1997; 86: 797-805. PMID: 10.1097/00000542-199704000-00009. PMID: 9105223.
crossref pmid
6. Critchley LA, Conway F. Hypotension during subarachnoid anaesthesia: haemodynamic effects of colloid and metaraminol. Br J Anaesth 1996; 76: 734-6. PMID: 10.1093/bja/76.5.734.
crossref pmid pdf
7. Løvstad RZ, Granhus G, Hetland S. Bradycardia and asystolic cardiac arrest during spinal anaesthesia: a report of five cases. Acta Anaesthesiol Scand 2000; 44: 48-52. PMID: 10.1034/j.1399-6576.2000.440109.x. PMID: 10669271.
crossref pmid
8. Ou CH, Tsou MY, Ting CK, Chiou CS, Chan KH, Tsai SK. Occurrence of the Bezold-Jarisch reflex during Cesarean section under spinal anesthesia--a case report. Acta Anaesthesiol Taiwan 2004; 42: 175-8. PMID: 15551897.
9. Saxena PR, Villalón CM. Cardiovascular effects of serotonin agonists and antagonists. J Cardiovasc Pharmacol 1990; 15(Suppl 7): S17-34. PMID: 10.1097/00005344-199001001-00004. PMID: 1702484.
10. Owczuk R, Wenski W, Polak-Krzeminska A, Twardowski P, Arszułowicz R, Dylczyk-Sommer A, et al. Ondansetron given intravenously attenuates arterial blood pressure drop due to spinal anesthesia: a double-blind, placebo-controlled study. Reg Anesth Pain Med 2008; 33: 332-9. PMID: 10.1097/00115550-200807000-00008. PMID: 18675744.
crossref pmid
11. Eldaba AA, Amr YM. Intravenous granisetron attenuates hypotension during spinal anesthesia in cesarean delivery: A double-blind, prospective randomized controlled study. J Anaesthesiol Clin Pharmacol 2015; 31: 329-32. PMID: 10.4103/0970-9185.161667. PMID: 26330710. PMID: PMC4541178.
crossref pmid pmc
12. Kim YY, Song DU, Lee KH, Lee IJ, Song JW, Lim JH. Comparison of palonosetron with ondansetron in preventing postoperative nausea and vomiting after thyroidectomy during a 48-hour period. Anesth Pain Med 2012; 7: 312-6.

13. Gupta K, Singh I, Gupta PK, Chauhan H, Jain M, Rastogi B. Palonosetron, Ondansetron, and Granisetron for antiemetic prophylaxis of postoperative nausea and vomiting - A comparative evaluation. Anesth Essays Res 2014; 8: 197-201. PMID: 10.4103/0259-1162.134503. PMID: 25886226. PMID: PMC4173632.
crossref pmid pmc
14. Aviado DM, Guevara Aviado D. The Bezold-Jarisch reflex. A historical perspective of cardiopulmonary reflexes. Ann N Y Acad Sci 2001; 940: 48-58. PMID: 10.1111/j.1749-6632.2001.tb03666.x. PMID: 11458703.
crossref pmid
15. Kinsella SM, Tuckey JP. Perioperative bradycardia and asystole: relationship to vasovagal syncope and the Bezold-Jarisch reflex. Br J Anaesth 2001; 86: 859-68. PMID: 10.1093/bja/86.6.859.
crossref pmid pdf
16. Nichols DE, Nichols CD. Serotonin receptors. Chem Rev 2008; 108: 1614-41. PMID: 10.1021/cr078224o. PMID: 18476671.
crossref pmid
17. Adams VR, Valley AW. Granisetron: the second serotonin-receptor antagonist. Ann Pharmacother 1995; 29: 1240-51. PMID: 8672830.
crossref pmid
18. Rojas C, Stathis M, Thomas AG, Massuda EB, Alt J, Zhang J, et al. Palonosetron exhibits unique molecular interactions with the 5-HT3 receptor. Anesth Analg 2008; 107: 469-78. PMID: 10.1213/ane.0b013e318172fa74. PMID: 18633025.
crossref pmid
19. Shin HJ, Choi ES, Lee GW, Do SH. Effects of Preoperative Serotonin-Receptor-Antagonist Administration in Spinal Anesthesia-Induced Hypotension: A Randomized, Double-blind Comparison Study of Ramosetron and Ondansetron. Reg Anesth Pain Med 2015; 40: 583-8. PMID: 10.1097/AAP.0000000000000300. PMID: 26263075.
crossref pmid
20. Ortiz-Gómez JR, Palacio-Abizanda FJ, Morillas-Ramirez F, Fornet-Ruiz I, Lorenzo-Jiménez A, Bermejo-Albares ML, et al. The effect of intravenous ondansetron on maternal haemodynamics during elective caesarean delivery under spinal anaesthesia: a double-blind, randomised, placebo-controlled trial. Int J Obstet Anesth 2014; 23: 138-43. PMID: 10.1016/j.ijoa.2014.01.005. PMID: 24631057.
crossref pmid
21. Singla D, Kathuria S, Singh A, Kaul T, Gupta S, Mamta . Risk factors for development of early hypotension during spinal anaesthesia. J Anaesthesiol Clin Pharmacol 2006; 22: 387-93.

22. Owczuk R, Wenski W, Twardowski P, Dylczyk-Sommer A, Sawicka W, Wujtewicz MA, et al. Ondansetron attenuates the decrease in blood pressure due to spinal anesthesia in the elderly: a double blind, placebo-controlled study. Minerva Anestesiol 2015; 81: 598-607. PMID: 25220555.

Article category

Browse all articles >


Browse all articles >

Editorial Office
101-3503, Lotte Castle President, 109 Mapo-daero, Mapo-gu, Seoul 04146, Korea
Tel: +82-2-792-5128    Fax: +82-2-792-4089    E-mail:                

Copyright © 2024 by Korean Society of Anesthesiologists.

Developed in M2PI

Close layer
prev next